Multiple positive solutions for (n-1, 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations
نویسنده
چکیده
In this paper, we consider (n-1, 1)-type conjugate boundary value problem for the nonlinear fractional differential equation D0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, λ > 0, u(0) = 0, 0 ≤ j ≤ n− 2, u(1) = 0, where λ is a parameter, α ∈ (n− 1, n] is a real number and n ≥ 3, and D0+ is the Riemann-Liouville’s fractional derivative, and f is continuous and semipositone. We give properties of Green’s function of the boundary value problems, and derive an interval of λ such that any λ lying in this interval, the semipositone boundary value problem has multiple positive solutions.
منابع مشابه
Multiple positive solutions for (n-1, 1)-type semipositone conjugate boundary value problems for coupled systems of nonlinear fractional differential equations
In this paper, we consider (n-1, 1)-type conjugate boundary value problem for coupled systems of the nonlinear fractional differential equation
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملPositive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations
In this paper, we study the existence of positive solutions for a class of coupled integral boundary value problems of nonlinear semipositone Hadamard fractional differential equations Du(t) + λf(t, u(t), v(t)) = 0, Dv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0, u(1) = v(1) = 0, 0 ≤ j ≤ n− 2, u(e) = μ ∫ e 1 v(s) ds s , v(e) = ν ∫ e
متن کاملTwin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions
This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone boundary value problem (SBVP, for short) with coupled integral boundary value conditions: D0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1), D0+v(t) + λg(t,u(t), v(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, j = 0, 1, 2, · · · ,n− 2, Dα−1 0+ u(1) = λ1 ∫η1 0 v(t)...
متن کاملMultiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations
where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . ,m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1, ∑m–2 i=1 βiη α–1 i < 1, D α 0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular at u = 0. As an application of Green’s function, we give some multiple positive solutions for singular positone and semipositone boundary value problems by means of the Leray–Schauder nonlinear a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010